Basics
位运算包含如下基本操作: &(and), |(or), ~(not), ^(exclusive-or, xor), << (left shift), >> (right shift)
- 合并:A | B
- 交集:A & B
- 减法:A & ~B
- 取反:ALL_BITS ^ A or ~A
- 设置某一位为1:A |= 1 << bit
- 清除某一位为0:A &= ~(1 << bit)
- 判断某一位是否为1:(A & 1 << bit) != 0
- 抽取最后一位bit位:A&-A or A&~(A-1) or x^(x&(x-1))
- 清除最后一位bit位:A & (A-1)
- Get all 1-bits ~0 ????
Examples
1 2 3 4 5 6
| def countOne(n): count = 0 while n: n = n & (n - 1) count += 1 return count
|
1 2
| def getSum(a, b): return a if b == 0 else getSum(a ^ b, (a & b) << 1)
|
1 2
| def getSubtract(a, b): return a if b == 0 else getSubtract(a ^ b, (~a & b) << 1)
|
- 查找丢失的数字,长度为n的数字,内部包含 0,1,2,…,n,且不重复。现在有一个数字丢失了,找出哪个数字丢失。如n = 4, nums = [0, 1, 3], 丢失的是2
1 2 3 4 5 6
| def missingNumber(nums): ret = 0 for i, num in enumerate(nums): ret ^= i ret ^= num return ret ^ len(nums)
|
- 找出小于N的最大 2^x(每次清除最后一位1,找到n变成0之前的最后一个梳子状态也可以)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| def largest_power(n): n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 return (n + 1) >> 1 def largest_power2(n): pre = n while n: pre = n n &= n - 1 return pre
|
1 2 3 4 5 6 7
| def reverseBits2(n): res = 0 for i in range(32): res <<= 1 res |= n & 1 n >>= 1 return res
|
- 给出区间[m, n],(0 <= m <= n <= 2147483647),返回区间内数字按位and之后的结果;如[5, 7] = 5 & 6 & 7 = 4
1 2 3 4 5 6 7
| def rangeBitwiseAnd(m, n): a = 0 while m != n: m >>= 1 n >>= 1 a += 1 return m << a
|
- 给定无符号的n,转换成二进制之后包含1的数量(Hamming weight)
1 2 3 4 5 6
| def hammingWeight(n): count = 0 while n: n &= n - 1 count += 1 return count
|
Application
在一个DNA字符串(只包含ACGT)中找出重复的长度为10的子串,例:
Given s = “AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT”,
Return: [“AAAAACCCCC”, “CCCCCAAAAA”].
- 解法-1:遍历所有的子串,通过dict判断是否重复
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| class Solution(object): def findRepeatedDnaSequences(self, s): """ :type s: str :rtype: List[str] """ if len(s) < 10: return [] sub_dict = {} ans = [] for i in range(len(s) - 10 + 1): substring = s[i:i + 10] if sub_dict.has_key(substring): if sub_dict[substring] == 1: ans.append(substring) sub_dict[substring] += 1 else: sub_dict[substring] = 1 return ans
|
- 解法-2:上述需要把所有长度为10的子串都记录下来,会占一定的空间,我们使用二进制来优化空间占用。因为只有ACGT四个字符,所以我们可以考虑用两位二进制来表示一个字符,A = 00,C = 01,G = 10,T = 11,这样对于每个子串,我们可以使用 20位二进制来表示,节省了上述key占有的空间
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| class Solution(object): def findRepeatedDnaSequences(self, s): """ :type s: str :rtype: List[str] """ if len(s) <= 10: return [] char_dict = {'A': 0, 'C': 1, 'G': 2, 'T': 3} sub_dict = {} ans = [] cur = 0 for i in range(9): cur = (cur << 2) | char_dict[s[i]] for i in range(9, len(s)): cur = (cur & 0x3ffff) << 2 | char_dict[s[i]] if sub_dict.has_key(cur): if sub_dict[cur] == 1: ans.append(s[i - 9:i + 1]) sub_dict[cur] += 1 else: sub_dict[cur] = 1 return ans
|
给定长度为n的数字,找出其中出现次数超过⌊ n/2 ⌋的数字,众数
- 解法-1:dict记录出现次数,遍历查看出现次数最多的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ num_dict = {} for i, num in enumerate(nums): if not num_dict.has_key(num): num_dict[num] = 0 num_dict[num] += 1 for num in num_dict.keys(): if num_dict[num] >= len(nums) / 2 + len(nums) % 2: return num
|
- 解法-2:迭代32次,每次计算所有n个数第i位为1的个数,由于众数一定存在,所以如果第i位为1的个数大于 ⌊ n/2 ⌋,则众数中相应位肯定也为1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| class Solution(object): def majorityElement_bit(self, nums): mask, ret = 1, 0 for i in range(32): count = 0 for num in nums: if mask & num: count += 1 if count > len(nums) # if the 31th bit if 1, # it means it's a negative number if i == 31: ret = -((1 << 31) - ret) else: ret |= mask mask <<= 1 return ret
|
给定一组数,其中有两个元素只出现一次,其他都出现两次,找出只出现一次的两个元素
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| class Solution(object): def singleNumber(self, nums): """ :type nums: List[int] :rtype: List[int] """ num_dict = {} ans = [] for num in nums: if not num_dict.has_key(num): num_dict[num] = 0 num_dict[num] += 1 for num in num_dict.keys(): if num_dict[num] == 1: ans.append(num) return ans
|
- 解法-2:把所有数字都xor下,可得到a ^ b,通过a ^ b随便取其中等于1的一位(表示a和b在这一位中一个是0,一个是1),去和数组所有的数字 & 下,可以把数组分成两组,且两组数都满足只有一个数字出现一次,其他数字都出现两次。分别对两组数求只出现一次的数字。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| class Solution(object): def singleNumber_bit(self, nums): """ :type nums: List[int] :rtype: List[int] """ s = 0 for x in nums: s ^= x s &= -s ans = [0, 0] for x in nums: if x & s: ans[0] ^= x else: ans[1] ^= x return ans
|
给定一串单词,从中找出两个没有公用字符的单子,且length(word[i]) * length(word[j])最大,返回最大值。
- 解法:复杂度O(n^2),主要问题是判断两个word是否有公用字符,把使用到的字符转换成二进制数进行记录,两个word对应的二进制数 & 一下如果 = 0,则表示没有公用字符。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| class Solution(object): def getBitNum(self, word): num = 0 for c in word: num |= 1 << (ord(c) - ord('a')) return num def maxProduct(self, words): """ :type words: List[str] :rtype: int """ word_bit = {} ans = 0 for word in words: word_bit[word] = self.getBitNum(word) l = len(words) for i, word1 in enumerate(words): for j, word2 in enumerate(words, i + 1): if not word_bit[word1] & word_bit[word2]: ans = max(ans, len(word1) * len(word2)) return ans
|
原文:A summary: how to use bit manipulation to solve problems easily and efficiently